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Images of randomly placed two-dimensional arrays of gold balls have been

reconstructed from their soft-X-ray transmission diffraction patterns. An

iterative hybrid input±output (HiO) algorithm was used to solve the phase

problem for the continuous distribution of diffuse X-ray scattering. Knowledge

of the approximate size of the clusters was required. The images compare well

with scanning electron microscope (SEM) images of the same sample. The use of

micrometre-sized silicon nitride window supports is suggested, and absorption

®lters have been used to allow collection of low spatial frequencies often

obscured by a beam stop. This method of phasing diffuse scattering may have

application to scattering from individual inorganic nanostructures or single

macromolecules.

1. Introduction

This paper describes the reconstruction of images of two-

dimensional non-periodic objects from their experimental

coherent soft-X-ray transmission speckle diffraction patterns.

It follows previous experimental work on the inversion of

coherent optical (Cederquist et al., 1988; Kamura & Komatsu,

1998), X-ray (Miao et al., 1999; Robinson et al., 2001) and

electron (Weierstall et al., 2001) diffraction data, based on

theoretical work by Sayre et al. (Sayre, 1952, 1980; Sayre et al.,

1998), Gerchberg & Saxton (1972), Fienup (1982) and others.

The object consists of an array of randomly positioned gold

balls of 50 nm diameter, illuminated by the coherent soft-

X-ray beam generated by an undulator at the Advanced Light

Source (ALS) storage ring at Lawrence Berkeley Laboratory.

SEM images of the same object are used to evaluate the

veracity of the iterative hybrid input±output (HiO) algorithm

(Fienup, 1982), which was used to reconstruct the images. We

brie¯y describe the prospects for further development of this

lensless imaging technique. The work is aimed at image

reconstruction without the need for additional low-resolution

images obtained with a lens, as used in previous work, to

provide the low spatial frequencies obscured by a beam stop.

We describe the use of absorption ®lters to address this

problem, but ®nd that, for our clustered objects, low-resolu-

tion images are still needed to provide a suf®ciently accurate

support. Supports based on the autocorrelation function are

also explored.

A considerable literature describes various approaches to

the phase problem for non-periodic objects [for a review, see

Stark (1987)]. These include developments of the powerful

Gerchberg±Saxton±Fienup hybrid input±output (HiO) algor-

ithm (Gerchberg & Saxton, 1972; Fienup, 1982), approaches

based on analyticity and complex zeros (Liao et al., 1997), the

study of projections onto convex sets [see Bauschke et al.

(2002) for recent work] and use of the transport of intensity

equations (Paganin & Nugent, 1998). A summary of work on

all these methods can be found in the workshop summary

given in Spence et al. (2001). These methods have been used to

phase experimental far- and near-®eld radiation ®elds in areas

as diverse as neutron scattering, laser scattering and coherent

electron nanodiffraction (Weierstall et al., 2001). Despite the

success of simulations that include noise, however, experi-

mental results remain scarce. A notable exception is the

striking tomographic images which have been reconstructed

from coherent soft and hard X-ray scattering from non-peri-

odic objects using the HiO algorithm and its developments, in

combination with low-resolution imaging by other methods,

by Miao and colleagues (Miao et al., 1999, 2002), based on the

approach of Sayre (1980), who refer to the method as over-

sampling. The method is akin to the solvent-¯attening,

fragment-completion and density-modi®cation methods of

crystallography, which have been analyzed in detail using the

concept of a con®ned structure (De Caro et al., 2002). The

emphasis on oversampling makes connection with the use of

non-crystallographic symmetries to assist in solving the phase

problem for crystals [see Millane (1990) for a review]. The

HiO algorithm iterates between real and reciprocal space,

applying known constraints in each domain. The most

important three of these are the known sign of the charge

density in real space, its measured Fourier modulus, and a

known support (the region in real space within which the

object is non-zero). Outside the support, the X-ray beam

passes unobstructed, hence this portion of the object is
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`known', just as the density of the water jacket around a

crystallized protein is known, and this known information

compensates for the loss of phase information. In using the

algorithm, a set of randomly chosen phases are used for the

diffraction pattern initially, and the ®nal result must be inde-

pendent of this choice. For small phase shifts in two dimen-

sions, the signs of both the real and imaginary parts of the

object wavefunction are also known (Miao et al., 1999).

Sampling in the diffraction pattern of a non-periodic object is

®ner than the Nyquist rate for the charge density (at which

Bragg beams would appear if the charge density were peri-

odically continued) and corresponds to that required for

Nyquist sampling of the autocorrelation function of the

isolated object (Sayre, 1952). By thus coherently diffracting

from an area at least, say, four times as large as the object, for

which most of this total area (outside the support) consists of

`known' material with unit transmission, it is not surprising

that the phase problem can be solved. An error metric is

de®ned which measures agreement between the known

(unity) value of the object transmission function outside the

support of the isolated object and the current estimate ± a

small result indicating that the three constraints have been

satis®ed. The result for zero error has been shown to be

unique (and thus correct inside the support) in all but

pathologically rare cases (Barakat & Newsam, 1984) for two-

dimensional complex objects. This error is a useful guide to

convergence only for the error-reduction algorithm. For

complex objects with large phase shifts, the signs of the

complex image are unknown. However, it has been shown that

by the use of a disjoint support consisting of suf®ciently

separated regions (such as some of our clusters), complex

objects may be reconstructed (Fienup, 1987). A suf®cient

separation satis®es the conditions for Fourier transform

holography (Howells et al., 1999). However, in this case the

accuracy with which the support needs to be known increases

greatly. For three-dimensional objects, reciprocal space may

be ®lled with data before iterating using three-dimensional

Fourier transforms, and a known volume which encloses the

object may be used as a support (Miao et al., 2001). Then it is

found that the convergence properties of HiO are improved,

since the three-dimensional problem is overdetermined by a

factor of two (Millane, 1993). Only the phase change per voxel

need be small in order to apply a sign constraint, rather than

the total phase charge along an optical path parallel to the

beam through a two-dimensional object.

Experimentally, implementation of the HiO algorithm is

dif®cult. Samples usually consist of an isolated object

supported on an X-ray-transparent silicon nitride window.

Given typical 1024 � 1024 pixel CCD (charge-coupled

device) detectors, the size of the object is severely limited. For

example, with oversampling by two in each dimension and a

®nal resolution of 10 nm per pixel in the reconstruction, the

overall width of the empty area plus object must be known a

priori to be less than 5 mm. The handling, placement and

goniometer design for such isolated objects is dif®cult. Dilute

suspensions of organic structures in amorphous ice (as used in

cryomicroscopy) may provide a solution, if the increase in

radiation damage with resolution does not prove prohibitive

(Spence, 2003).

In addition to the problem of knowing a priori the boundary

of the isolated object, a second serious practical dif®culty with

the HiO approach results from the need for a beam stop of

signi®cant size in the transmission geometry, which results in

the loss of low-spatial-frequency information. This problem

has been addressed in the past by using the HiO oversampling

method in combination with an independent low-resolution

image of the object (e.g. from SEM, X-ray zone plate or

optical image) to provide the low spatial frequencies. A

further dif®culty with the HiO method is the practical problem

of ®nding the isolated sample (which is too small to be seen

with our external optical microscope) with the X-ray beam.

Here the X-ray shadow image of the sample as formed by edge

scattering at the illumination aperture is of some use. In this

paper, we address the beam-stop problem by using absorption

®lters to reduce intensity and so minimize the loss of low-angle

scattering. We address the problem of making an isolated

object through the use of very small silicon nitride membranes.

We also demonstrate the value of the autocorrelation function

to provide a direct image in the case where the object contains

some isolated point scatterers, such as gold balls. Using both

this `heavy-atom' method and the HiO algorithm, we obtain

reconstructed images of 50 nm diameter balls with about

seven pixels along the ball diameter.

2. Experimental

Fig. 1 shows the experimental arrangement. All items except

the monochromator are ®tted to a 6 in MDC UHV cube.

Figure 1
Side view of chamber. The inclined mirror allows viewing of the energy
spectrum from the side of the chamber on phosphor. X-ray transparent
mirrors were made using silicon nitride windows to re¯ect visible light,
avoiding the need for a hole. An absorption ®lter (6 mm, aluminium)
before the inclined mirror was used to record the inner region of the
pattern around the beam stop. Photodiodes and phosphor screens are
used to align apertures and the zone plate. The beam stop is a 1 mm
diameter brass bead on a 0.1 mm wire across the CCD. Sample and
aperture stages not shown.



Mechanical (lateral tilt/vertical translate) coarse X,Y motions

support from below through mini¯anges the energy-dispersion

slit and the ®eld-limiting aperture, for which ®ne X,Y motion

is provided by a piezo stage. The sample stage consists of

crossed miniature Newport UMR3.5V6 stages driven by New

Focus 830X-V picomotors. The detector is a Princeton nude

soft X-ray PI-SX:1024/TE CCD camera with 24 mm pixels,

mounted on an opening portal door with O-ring seal for

simple sample exchange. The working distance from sample to

camera was 105 mm. Two beam-stop bars spanning wide forks

on linear motion feedthroughs were installed in orthogonal

directions across the detector. These could be inserted sepa-

rately during successive recordings, and the patterns added

together, to produce a square of missing data in the center. A

later improved arrangement, which avoids the need for

merging data, consisted of a 1 mm diameter bead on a 0.1 mm

wire spanning the same fork. By taking advantage of slight

bending of the wire and the Friedel symmetry of the patterns,

it was possible to record all the data except that obstructed by

the bead. By withdrawing the fork, the intensity behind the

beamstop could be recorded after insertion of a 6 mm thick

aluminium foil absorption ®lter. An external optical micro-

scope is used to ®nd the beam, using a small dot of phosphor

near the sample and an eyepiece graticule. (After centering

the beam on the phosphor at the graticule center, the sample is

brought to the stationary graticule cross hairs with the stage

motions). Silicon nitride windows coated with aluminium were

found to make excellent 45� optical mirrors which allowed the

source side of the sample to be viewed with the beam on.

A novel zone-plate monochromator was used, described in

detail elsewhere (Howells et al., 2003). This gives a fractional

monochromaticity at 600 eV of 0.2% and is used in ®rst order.

The outermost zone width is 0.34 mm, and the structure

consists of a 0.75 mm square off-axis portion of a nominal

5.31 mm diameter plate (of 3901 zones). The focal length is

874 mm. The zone plate is etched into a silicon nitride window,

coated with aluminium on both sides to provide mechanical

support and heat removal. By manually scanning the disper-

sion slit (which lies at the approximate focus of the zone plate)

vertically, a spectrum could be read out from the photodiode

one, and the intense ®rst-order line isolated. A screen for

observing this spectrum was mounted beside the slits, which

could be observed through a mirror.

Considerable dif®culties were encountered with stray light

and stray X-rays, which must be minimized in view of the very

small X-ray scattering volume. The region between sample

and CCD camera was ®lled with a removable cone to minimize

stray light generated, for example, from the phosphors in the

chamber. Every metal foil aperture acts as a point source of

X-rays at its edges, and these point sources produce shadow

images at the detector of every subsequent X-ray transparent

object. (The suggestion has been made that the rim of a second

aperture should lie around the ®rst minimum of the diffraction

pattern from a ®rst aperture, thereby minimizing stray edge

scattering.) The effects of diffraction broadening in the beam

as it propagates beyond apertures can be signi®cant at these

wavelengths and propagation distances. The distances indi-

cated in Fig. 1 were chosen to minimize these artifacts, with the

zone-plate monochromator focused on the 5 mm illumination

aperture. When silicon nitride windows larger than about

50 mm were used to support the sample, the shadow image on

the CCD of the window projected from a point source on the

edge of the ®eld-limiting aperture could be arranged to be

smaller than the beam stop. For the very small windows used

(a few mm), the far-®eld diffraction pattern of the window

itself produces a sinc-function-like distribution at the center of

the pattern. Diffraction broadening of the direct beam from

the 5 mm ®eld-limiting aperture at the detector produces a

total beam width smaller than one CCD pixel. Nevertheless,

severe `blooming' effects were observed extending about

1 mm from the center, resulting in the loss of low-spatial-

frequency information. (This may actually be due to stray

scattering from roughness in the 5 mm aperture on a scale

larger than the wavelength.) For this reason, in previous work

it has been necessary to use an image obtained by a different

technique (e.g. X-ray zone-plate microscope) to supply these

missing low spatial frequencies. In this paper, we have

attempted to address this `beam-stop' problem by other

means, including the use of an absorption ®lter and a wide

range of recording times.

Samples were made by placing a droplet of solution

containing `gold conjugate' colloidal gold balls on a silicon

nitride window (thickness 100 nm) and allowing it to dry. The

samples were also imaged by a ®eld-emission scanning elec-

tron microscope (SEM).

The choice of experimental parameters is governed by the

following considerations. We de®ne the object support as the

boundary of an object of width D. The essential requirement

for the success of the HiO algorithm is the use of an isolated

object of size D with compact support, where D is known

approximately, within a larger ®eld of width W > 2D, from

which the diffraction pattern is obtained. The density in the

region outside the support must be known ± in our case this is

the transmissivity of the silicon nitride supporting membrane,

assumed to be unity. If W > 2D, solution of the phase problem

is possible, since most of the object is then known, having

transmissivity unity. It follows that coherent diffraction is

required from a region of width W > 2D, a condition said

to provide `oversampling'. (In fact, this condition provides

correct Nyquist sampling of the entire object and diffraction

pattern, if we consider the known bordering region outside the

object support as part of the `object'.). If the ®rst-order CCD

pixel (adjacent to the central pixel) subtends angle � as shown

in Fig. 1, then the camera length L must be chosen such that

W = �=� to provide adequate `oversampling'. With our 24 mm

pixels and L = 105 mm, taking � = 2.11 nm at 588 eV, we have

W = 9.23 mm, which must be less than the lateral coherence

width of the beam. Temporal coherence must also not limit

interference between points at this spacing.

The formation of an isolated test object much smaller than

9 mm, while ensuring that no other material contributes to the

diffraction pattern, proved dif®cult. In preliminary work, we

found that the use of very small silicon nitride windows (a few

mm across) has many advantages, since a drop of dilute solu-
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tion containing the objects of interest may be placed on the

window to dry. The object is then isolated by the transparent

portion of the window. In addition, these windows: (i) reduce

stray light into the detector area; (ii) greatly reduce `blooming'

at the center of the detector, by reducing the overall X-ray

signal from areas other than the sample; (iii) the crystal-

lographic wedge facets around the window make a soft aper-

ture, which eliminates stray X-ray scattering from edge

roughness on laser-drilled metal foil apertures; the wedge

angle, between (100) and (111) facets of silicon, is 54�

(attempts to apply the HiO algorithm to objects ®lling small

holes in opaque screens were unsuccessful owing to this edge

scattering); (iv) the windows produce a diffraction pattern in

the beam-stop region that is useful for orientating and scaling

the data to the support.

It is not possible, however, to use the physical boundary of

the window as a support function to be applied in the itera-

tions. The 54� wedge shape of the window boundaries is

partially transparent, so that a border region of a mm or so

exists, on which gold balls will contribute to the diffraction

pattern. (At 600 eV, the linear attenuation distance in silicon is

0.6 mm.) As discussed in previous work, for real two-dimen-

sional objects, a computational triangle of arbitrary shape

enclosing the object may be used as a support. Our objects

behave as real if the phase shift � [see equation (1) below]

introduced by scattering is less than �=2, in which case a sign

constraint may be applied, in which the signs of both the real

and imaginary parts of the image are set positive. When the

border of partially transparent material is included, the

oversampling condition may not be ful®lled for such a support

shape, and the additional phase shift introduced by the silicon

may exceed �=2. (For gold, the phase shift is 0.36 rad per

30 nm thickness at 588 eV.) We have therefore used small

loops drawn around the isolated clusters as a disjoint support,

setting the amplitude in the image to zero outside these loops

in each iteration of HiO. The loop shapes can be obtained

either from the autocorrelation function (the transform of the

diffracted intensity), which overestimates the number of loops,

or from the SEM image. The HiO algorithm is then expected

to provide the image detail inside these loops.

3. Results

Fig. 2(a) shows the experimental diffraction pattern obtained

from a set of 50 nm diameter gold ball clusters lying on a

silicon nitride window about 2.5 mm square. The beam energy

was 588 eV and the working distance 105 mm. The pattern

shows ®ne speckle fringes (owing to interference between

different balls) that modulate the Airey disc-like pattern

expected from a single ball. A recognizable pattern is obtained

after about 10 s. Fig. 2(a) shows data accumulated over several

hours. Small deviations from inversion symmetry in the

pattern were observed ± for a real object the pattern must be

symmetric. The pattern shown has been made symmetrical by

inversion averaging. Some of the central region exceeds the

dynamic range of the CCD but is recorded separately with an

absorption ®lter inserted to allow safe removal of the beam

stop from the X-ray path. For later comparison purposes, Fig.

2(b) shows the Fourier transform of the intensity of the SEM

image of the sample, which is not expected to be identical to

Figure 2
(a) Experimental soft X-ray transmission diffraction pattern (Au5010)
from clusters of 50 nm diameter gold balls lying on a transparent
membrane. X-ray wavelength 2.11 nm (588 eV), working distance
105 mm. The central region exceeds the dynamic range of display. The
pattern has been averaged by inversion and contains artifacts from
camera readout. (b) Simulated diffraction pattern based on ball positions
obtained from a SEM image of the same object. SEM image and
extracted ball positions are shown in Figs. 5(a) and (b), respectively.



the X-ray pattern from our phase objects. Fig. 3(a) shows the

innermost region and the beam stop, revealing the subsidiary

minima in the diffraction pattern from the window itself. Fig.

3(b) shows a simulation of this pattern, discussed below. The

orientation of these minima was useful for determining the

orientation of the support mask imposed on the object

reconstruction.

Simulations were performed for the diffraction pattern

from a phase sphere with transmission function

T�r� � exp�2�int�r�=�� � a exp�i�� � a cos � � ia sin �; �1�
where r is a two-dimensional vector, t(r) is the projected

thickness of the sphere, and n = (1ÿ �)ÿ i� = 1ÿ 0.00409176

ÿ i0.00352867 is the refractive index of gold at 588 eV. This

introduces a phase shift of about 0.6 rad for a thickness of

50 nm of gold at 588 eV, within the limit of the small-angle

approximation needed for use of the sign constraint in the
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Figure 3
(a) Central region of a pattern similar to Fig. 2, showing 1 mm beam-stop
bead and the sinc-function-like pattern from the silicon nitride window. In
addition to the subsidiary minima from the window, additional streaks are
seen which arise from the valleys running from the corners of the SiN
windows. (b) Simulated soft-X-ray diffraction pattern from silicon nitride
window with 54� wedge-shaped borders. The pattern is in good agreement
with (a).

Figure 4
(a) Fourier transform of the intensity distribution shown in Fig. 2(a). This
is the autocorrelation (Patterson) function of the object. Note single ball
features at E and F, which correspond to the balls in the SEM image Fig.
5(a) marked E and F. (b) Enlarged portion of autocorrelation function,
showing real-space images of several clusters as formed by convolution
with the autocorrelation of one isolated ball. In (c) is shown the real-
space structure obtained from the SEM image, indicating the inter-ball
vectors identi®ed in (b).
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reconstruction, which assumes that (a cos �) and (a sin �) are

positive. In general, the modulus I(u) of the Fourier transform

of T(r) does not have inversion symmetry. For small �,
however, it does, and this ``Friedel's law'' behavior may be

used as a test for the more readily inverted `real object'. For

our special case of a random collection of symmetric objects,

I(u) also has inversion symmetry for all �. Simulations show

that the ®rst minimum of the pattern from a single phase ball

occurs at a value of sin �=� = 1.394=d (d = 50 nm, �= 2.11 nm),

where d is the diameter of the ball and � is the semiangle

subtended at the sample by the ®rst minimum in the diffrac-

tion pattern (Fig. 1). (The factor 1.394, which depends on the

refractive index of the ball, is replaced by 1.22 for the Airey

disc pattern from an opaque ball.) This result can also be used

to scale the data. The HiO algorithm was always successful in

rapidly recovering the correct image from simulated diffrac-

tion intensity data, using a triangular support shape which

included all balls, even in the presence of simulated Poisson

noise.

Fig. 4(a) shows the experimental autocorrelation function

of the object obtained by Fourier transform of Fig. 2. This is a

map of all inter-ball vectors transferred to common origin. In

Fig. 4(b), we show an enlarged portion of this map, with a

sketch of the real-space structure below in Fig. 4(c) obtained

from a SEM image. Because the structure contains at least one

isolated ball (e.g. A in Fig. 4c), the autocorrelation function

includes an image of every cluster convoluted with the single

ball A, and these images form a faithful representation of the

structure in real space. (This is analogous to the heavy-atom

method of crystallography.) Thus, Fig. 4(b) already provides

useful images of several clusters (e.g. cluster B) without

iterative processing. These images can also be used to generate

a support function.

Fig. 5(a) shows a SEM image of the same sample used to

obtain the diffraction pattern in Fig. 2 (data set Au5010),

including the area around the X-ray-transparent window,

which is seen to be about 2 mm on a side. Fig. 5(b) shows a map

of ball positions extracted from the SEM image. The positions

of one isolated ball (A) and a cluster of three balls (B) are

noted in the image. The corresponding peaks these balls

generate in the autocorrelation function are indicated in Fig.

4(b). Fig. 6 compares the autocorrelation function obtained

from the SEM image and that from the experimental X-ray

diffraction pattern. The radial streaking in the X-ray pattern,

not present in the SEM-derived pattern, may be attributed to

the missing disc of data in the center of the X-ray diffraction

pattern.

Details of the iterative HiO algorithm used are given else-

where (Fienup, 1982, 1987; Weierstall et al., 2001). The scaling

of the support mask is an important step in the data analysis.

Several methods allow a scale to be applied to the diffraction

pattern and its transform, including observation of the

diffraction pattern from the silicon nitride window (whose

dimensions are known) and calibration of the diffraction

pattern using the known size of the balls. In fact, the most

reliable method was found to be based on the autocorrelation

function. Loops were drawn around each cluster in the SEM

Figure 5
(a) SEM image (with correct orientation) of sample which produced the
diffraction pattern in Fig. 2. The dark square in the center is the 100 nm-
thick silicon nitride membrane. (b) Positions of balls extracted from SEM
image in (a). The clusters seen in the autocorrelation function (Fig. 4b)
are indicated as A and B.



image, and the autocorrelation function of this mask was then

matched to the experimental autocorrelation function in

orientation and magni®cation. This method is independent of

the measurement of experimental parameters, and relies on

the fact that our object consists of isolated clusters. More

simply, the observation of two single-ball peaks in the (real-

space) autocorrelation function can be used to scale the

pattern.

Fig. 7 shows the result of applying the Fienup±Gerchberg±

Saxton HiO algorithm alone to the experimental data of Fig. 2,
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Figure 7
(a) Result of 150 iterations of the HiO algorithm applied to the
experimental data in Fig. 2. Support used for the reconstruction is shown
in (b) which is made by drawing around clusters in the SEM image. HiO
extracts internal detail (see Fig. 8) of the unknown region shown in white.
Note that balls imaged through the silicon frame around the edge are
dimmer, owing to absorption [compare Fig. 5(b) with (a)].

Figure 6
Comparison of (a) autocorrelation function obtained from SEM image
(Fig. 4) and (b) that obtained from the experimental diffraction X-ray
pattern shown in Fig. 2.
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while Figs. 8 and 9 show enlargements of the clusters and a

comparison with the SEM images of the larger clusters. The

same image was obtained when starting with a different set of

random phases. The support mask used was obtained from

loops drawn around each cluster seen in the SEM image.

Regions of missing data in the diffraction pattern were ®rst

obtained by interpolation and then allowed to ¯oat during the

iterations. A sign constraint was applied to both real and

imaginary parts of the image at each iteration, which were

made positive within loops. A feedback parameter value of 0.9

was used. Object areas outside the support loops drawn

around clusters were set to zero rather than unity, and the

¯oating zero-order Fourier coef®cient used to ®nd the average

value of the image. More sophisticated image constraints were

also tried, as discussed below. For balls lying on silicon, an

additional phase shift can be expected from the silicon

substrate ± this phase shift reaches the value � for a thickness

of 0.8 mm at 600 eV. Absorption will also be signi®cant for

balls imaged through the silicon ± we note that the clusters

reconstructed within the thin window area are much brighter

than those outside.

Attempts to reconstruct the images using a support

obtained by drawing around clusters in the autocorrelation

function (using no information from the SEM image) were not

successful.

4. Discussion

The reconstructed image obtained in Fig. 8 is seen to be a

sharp image of the 50 nm diameter balls in roughly the correct

positions they occupy in the corresponding SEM image.

Owing to charging artifacts, balls were seen to move during

the highest magni®cation SEM imaging of the large cluster,

which may explain discrepancies. The resolution of the

diffraction pattern in Fig. 2 from which the image is synthe-

sized is about R = 10 nm, since the ®rst zero of the ring pattern

occurs at 1.394�=d = 0.059 rad = �o (d = 50 nm, � = 2.11 nm),

and the pattern extends to 3�o = �=R. Image resolution is

more dif®cult to de®ne, since resolution was classically de®ned

as a property of an instrument, not a sample. For coherent

imaging of phase objects, as in this case, it depends on both,

and therefore cannot strictly be de®ned in a sample-inde-

pendent manner. Resolution also depends on noise and

contrast, and is affected by the curvature of the Ewald sphere

and the detector. The image was reconstructed in a manner

consistent with the resolution in the diffraction pattern and

the oversampling requirement, resulting in a pixel size of

W=1024 = 9 nm or 5.5 pixels across the diameter of each 50 nm

ball. To form this useful image, however, it was essential to

know the approximate outline of each cluster. For experi-

ments aimed at reconstructing images from the diffraction

patterns of individual isolated molecules, this requirement

need not be restrictive if the molecular size is known, and

hence no secondary imaging would be required. We ®nd that,

for objects consisting of many clusters, the use of a support

based on the autocorrelation function was not suf®cient to

provide a sharp image using this data.

The occurrence of single peaks in the autocorrelation

pattern (Fig. 4) affords a simple interpretation of some

features in this pattern. It indicates that clusters in the pattern

can be found which are a simple convolution of a cluster with

the image of a single ball, and so will show a direct image of

every cluster, broadened by the image of one ball. (This is

related to the method of Fourier transform holography.)

Hence the preparation of a sample consisting of an isolated

unknown object separated from an isolated gold ball by more

than twice the size of the object would be invertible from the

autocorrelation function alone (with resolution equal to the

ball size). The coherence width must span the distance

between ball and object. Macromolecules labeled with a single

smaller gold ball might also be used.

The use of absorption ®lters and multiple exposures with

different recording times has allowed us to record the entire

diffraction pattern. The inner region of this pattern is domi-

nated by the sinc-like diffraction pattern from the window

Figure 9
Enlargement of cluster C shown in Fig. 4(b), compared with SEM image
(lower). The scale is set by the size of the balls in the SEM image, which
have 50 nm diameter.

Figure 8
Enlargement of inner clusters shown in Fig. 7, showing internal detail.



(and its wedge-shaped surroundings), and the algorithm was

found to converge better if this region was excluded. Simu-

lations clearly show that the loss of a small central region of

the diffraction pattern does not prevent convergence of the

algorithm.

More restrictive constraints were also tried but found to be

less effective. These included constraining the image complex

amplitudes at each pixel to a circle in the complex plane [unit

modulus constraint, see equation (1)] or a spiral, if absorption

is allowed. The use of a known histogram of image grey levels

has also been suggested (Elser, 2003), and a `binary object'

constraint was tried. Here the balls are replaced by discs, and

the object transmissivity allowed only two possible complex

values.

Since balls outside the window clearly contributed to the

pattern, we could not use the known window shape as a

support. These outer balls introduce large phase shifts which

violate our sign condition, and this may explain differences

between the SEM image and the HiO image. Since we apply a

sign constraint to both real and imaginary parts of the image

(Miao et al., 2001), our objects belong to the class of weak but

complex objects. Convergence may have therefore been

improved by our use of a disjoint support, which is found to be

essential for true complex objects (large phase shifts). In order

to understand the contribution of the wedge-shaped border to

the center of the diffraction pattern, simulated diffraction

patterns were obtained for the silicon window frame alone.

This wedge introduces both phase and absorption contrast

which will generate low-angle scattering. Using the known

values of � and � for silicon and the known wedge angle of 54�,
a wedge transmission function was generated. The resulting

simulated diffraction pattern is shown in Fig. 3(b), in good

agreement with the experimental pattern in Fig. 3(a). We note

in particular that the pattern does not have inversion

symmetry, and the phase shifts used to simulate it exceed �=2

before absorption becomes severe. Attempts were made to

incorporate this simulation into a complex support without

success. Departures from Friedel symmetry in the data

(required by the algorithm) could be caused by strains in the

gold balls [see TEM images at atomic resolution (Smith,

1997)], by absorption in the silicon border, or by the occur-

rence of large phase shifts associated with the silicon border.

5. Conclusions

1. The preparation of an isolated object is the most

experimentally demanding aspect of diffractive imaging. The

use of mm-sized silicon nitride windows on single-crystal

silicon frames, with samples dispersed on them from solution,

addresses this problem. However, partial transparency of the

surrounding region should be avoided, perhaps by using a

large wedge angle or nano-¯uidic techniques for sample

deposition. The surface roughness of laser-drilled metal foil

apertures is found to generate strong scattering, making them

unsatisfactory. A crucial experimental problem for supported

samples is ensuring that the scattering from the edges of the

physical support window is less intense than that from the

sample.

2. In this work, we found that a secondary low-resolution

image was essential for de®ning the support function. The HiO

algorithm then reproduced well the internal structure of the

clusters at about 10 nm resolution, in reasonable agreement

with SEM images of the same cluster. This secondary image

may not be needed for the imaging of a single cluster of

approximately known size, provided that the scattering is

weak. The contribution to the diffraction pattern of balls

outside the window may explain the failure of reconstruction

using a support based on the autocorrelation function. By

comparison with our previous work, these inversions of X-ray

data are more successful than our inversions of experimental

coherent electron diffraction patterns (Weierstall et al., 2001),

but less successful than our inversions of experimental visible

light coherent diffraction patterns (Spence et al., 2002). This

trend would be explained by the relative experimental dif®-

culty of ensuring that no objects outside the known support

contribute to the diffraction pattern. For the visible light

experiments, the object consisted of transparent shapes in an

otherwise opaque mask.

3. Preparation of special objects containing an isolated gold

ball near an unknown compact object are shown experimen-

tally to allow simple image reconstruction without iteration

based on the autocorrelation function by methods analogous

to Fourier transform holography. This image may also provide

a support function for the retrieval of higher-resolution images

using the HiO algorithm.

4. The beam-stop problem, resulting in loss of low-order

data in HiO imaging, may be avoided using calibrated

absorption ®lters and multiple recording times.

5. If diffraction-pattern recording facilities are provided on

zone-plate X-ray microscopes, resolution enhancement may

be expected by combining image and diffraction data within

the scheme of the HiO iterative algorithm, as demonstrated in

the original Gerchberg±Saxton scheme.
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